Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
J Biomol Struct Dyn ; : 1-9, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38197420

RESUMO

Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes that remarkable facilitate the aminoacylation process during translation. With a high fidelity, the mischarged tRNA is prevented through implementing pre- and post-transfer proofreading mechanisms. For instance, Lysine-tRNA synthetase charges the native substrate, lysine, to its cognate tRNA. In spite of the great structural similarity between lysine to the noncognate and toxic ornithine, with the side chain of lysine being only one methylene group longer, LysRS is able to achieve this discrimination with a high efficiency. In this work, the hybrid quantum mechanics/molecular mechanics (QM/MM) investigation was applied to probe the pre-transfer editing mechanism catalyzed by lysyl-tRNA synthetase to reject the noncognte aminoacyl, L-ornityl (Orn), compared to the cognate substrate, L-lysyl. Particularly, the self-cyclization pre-transfer editing mechanism was explored for the two substrates. The substrate-assisted self-cyclization editing of Orn-AMP, where its phosphate moiety acts as the catalytic base, is found to be the rate-determining step with an energy barrier of 101.2 kJ mol-1. Meanwhile, the corresponding rate-limiting pathway for the native Lys-AMP lies at 140.2 kJ mol-1. This observation clearly indicated the infeasibility of this catalytic scenario in the presence of the native substrate. Interestingly, a thermodynamically favorable cyclic product of -92.9 kJ mol-1 with respect to the aminoacyl reactant complex demonstrated evidence of a successful pre-transfer editing. This reaction resulted in the discharge of the on-cognate -ornithine derivative from LysU's active site. These valuable mechanistic insights are valuable to enrich our knowledge of this extremely efficient and specific catalytic machinery of LysRS.Communicated by Ramaswamy H. Sarma.

2.
Neurotoxicology ; 99: 129-138, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37802190

RESUMO

In situ methods are valuable in all fields of research. In toxicology, the importance of dose is well known, elevating the need for in situ techniques to measure levels of toxicants and their byproducts in precise anatomically identifiable locations. More recently, additional emphasis has been placed on the value of techniques which can detect chemical form or speciation, which is equally important in the toxicology of a chemical compound. Many important but conventional methods risk losing valuable information due to extractions, digestions, or the general reliance on mobile phases. Few analytical tools possess the power and diversity of X-ray methods as in-situ methods. Here we present an overview, intended for toxicologists and pathologists, of a variety of synchrotron X-ray methods for determining in situ chemical form and distribution of heavier elements. The versatility and range of these synchrotron techniques, which are both established and emerging, is demonstrated in the context of the study of neurotoxicology of mercury, a global pollutant with the ability to harm both human health and the environment.


Assuntos
Poluentes Ambientais , Mercúrio , Humanos , Mercúrio/toxicidade , Mercúrio/análise , Raios X , Síncrotrons , Espectroscopia por Absorção de Raios X
3.
Glia ; 71(8): 2045-2066, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37132422

RESUMO

Remyelination and neurodegeneration prevention mitigate disability in Multiple Sclerosis (MS). We have shown acute intermittent hypoxia (AIH) is a novel, non-invasive and effective therapy for peripheral nerve repair, including remyelination. Thus, we posited AIH would improve repair following CNS demyelination and address the paucity of MS repair treatments. AIH's capacity to enhance intrinsic repair, functional recovery and alter disease course in the experimental autoimmune encephalomyelitis (EAE) model of MS was assessed. EAE was induced by MOG35-55 immunization in C57BL/6 female mice. EAE mice received either AIH (10 cycles-5 min 11% oxygen alternating with 5 min 21% oxygen) or Normoxia (control; 21% oxygen for same duration) once daily for 7d beginning at near peak EAE disease score of 2.5. Mice were followed post-treatment for an additional 7d before assessing histopathology or 14d to examine maintenance of AIH effects. Alterations in histopathological correlates of multiple repair indices were analyzed quantitatively in focally demyelinated ventral lumbar spinal cord areas to assess AIH impacts. AIH begun at near peak disease significantly improved daily clinical scores/functional recovery and associated histopathology relative to Normoxia controls and the former were maintained for at least 14d post-treatment. AIH enhanced correlates of myelination, axon protection and oligodendrocyte precursor cell recruitment to demyelinated areas. AIH also effected a dramatic reduction in inflammation, while polarizing remaining macrophages/microglia toward a pro-repair state. Collectively, this supports a role for AIH as a novel non-invasive therapy to enhance CNS repair and alter disease course following demyelination and holds promise as a neuroregenerative MS strategy.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Remielinização , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/terapia , Esclerose Múltipla/patologia , Esclerose Múltipla/terapia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Anaerobiose , Oxigênio , Feminino
4.
Brain Sci ; 12(11)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36421917

RESUMO

Bryan Hansen and Valentin Dragoi were previously included as authors in the publication [...].

5.
Brain Sci ; 12(4)2022 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-35448039

RESUMO

It is increasingly being understood that perceptual learning involves different types of plasticity. Thus, whereas the practice-based improvement in the ability to perform specific tasks is believed to rely on top-down plasticity, the capacity of sensory systems to passively adapt to the stimuli they are exposed to is believed to rely on bottom-up plasticity. However, top-down and bottom-up plasticity have never been investigated concurrently, and hence their relationship is not well understood. To examine whether passive exposure influences perceptual performance, we asked subjects to test their orientation discrimination performance around and orthogonal to the exposed orientation axes, at an exposed and an unexposed location while oriented sine-wave gratings were presented in a fixed position. Here we report that repetitive passive exposure to oriented sequences that are not linked to a specific task induces a persistent, bottom-up form of learning that is stronger than top-down practice learning and generalizes across complex stimulus dimensions. Importantly, orientation-specific exposure learning led to a robust improvement in the discrimination of complex stimuli (shapes and natural scenes). Our results indicate that long-term sensory adaptation by passive exposure should be viewed as a form of perceptual learning that is complementary to practice learning in that it reduces constraints on speed and generalization.

6.
Neurochem Res ; 47(3): 795-810, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34820737

RESUMO

White matter degeneration in the central nervous system (CNS) has been correlated with a decline in cognitive function during aging. Ultrastructural examination of the aging human brain shows a loss of myelin, yet little is known about molecular and biochemical changes that lead to myelin degeneration. In this study, we investigate myelination across the lifespan in C57BL/6 mice using electron microscopy and Fourier transform infrared (FTIR) spectroscopic imaging to better understand the relationship between structural and biochemical changes in CNS white matter tracts. A decrease in the number of myelinated axons was associated with altered lipid profiles in the corpus callosum of aged mice. FTIR spectroscopic imaging revealed alterations in functional groups associated with phospholipids, including the lipid acyl, lipid ester and phosphate vibrations. Biochemical changes in white matter were observed prior to structural changes and most predominant in the anterior regions of the corpus callosum. This was supported by biochemical analysis of fatty acid composition that demonstrated an overall trend towards increased monounsaturated fatty acids and decreased polyunsaturated fatty acids with age. To further explore the molecular mechanisms underlying these biochemical alterations, gene expression profiles of lipid metabolism and oxidative stress pathways were investigated. A decrease in the expression of several genes involved in glutathione metabolism suggests that oxidative damage to lipids may contribute to age-related white matter degeneration.


Assuntos
Substância Branca , Envelhecimento/fisiologia , Animais , Encéfalo/metabolismo , Corpo Caloso/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina , Espectroscopia de Infravermelho com Transformada de Fourier , Substância Branca/metabolismo
7.
Ann Neurol ; 90(3): 440-454, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34231919

RESUMO

OBJECTIVE: Histology reveals that early active multiple sclerosis lesions can be classified into 3 main interindividually heterogeneous but intraindividually stable immunopathological patterns of active demyelination (patterns I-III). In patterns I and II, a T-cell- and macrophage-associated demyelination is suggested, with pattern II only showing signs of a humoral immune response. Pattern III is characterized by inflammatory lesions with an oligodendrocyte degeneration. Patterns suggest pathogenic heterogeneity, and we postulated that they have distinct magnetic resonance imaging (MRI) correlates that may serve as biomarkers. METHODS: We evaluated in an international collaborative retrospective cohort study the MRI lesion characteristics of 789 conventional prebiopsy and follow-up MRIs in relation to their histopathologically classified immunopathological patterns (n = 161 subjects) and lesion edge features (n = 112). RESULTS: A strong association of a ringlike enhancement and a hypointense T2-weighted (T2w) rim with patterns I and II, but not pattern III, was observed. Only a fraction of pattern III patients showed a ringlike enhancement, and this was always atypical. Ringlike enhancement and T2w rims colocalized, and ringlike enhancement showed a strong association with macrophage rims as shown by histology. A strong concordance of MRI lesion characteristics, meaning that different lesions showed the same features, was found when comparing biopsied and nonbiopsied lesions at a given time point, indicating lesion homogeneity within individual patients. INTERPRETATION: We provide robust evidence that MRI characteristics reflect specific morphological features of multiple sclerosis immunopatterns and that ringlike enhancement and T2w hypointense rims might serve as a valuable noninvasive biomarker to differentiate pathological patterns of demyelination. ANN NEUROL 2021;90:440-454.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/imunologia , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/imunologia , Adulto , Encéfalo/patologia , Estudos de Coortes , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Estudos Retrospectivos
8.
ACS Appl Electron Mater ; 3(2): 813-824, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33644761

RESUMO

The performance of transistors designed specifically for high-frequency applications is critically reliant upon the semi-insulating electrical properties of the substrate. The suspected formation of a conductive path for radio frequency (RF) signals in the highly resistive (HR) silicon substrate itself has been long held responsible for the suboptimal efficiency of as-grown GaN high electron mobility transistors (HEMTs) at higher operating frequencies. Here, we reveal that not one but two discrete channels distinguishable by their carrier type, spatial extent, and origin within the metal-organic vapor phase epitaxy (MOVPE) growth process participate in such parasitic substrate conduction. An n-type layer that forms first is uniformly distributed in the substrate, and it has a purely thermal origin. Alongside this, a p-type layer is localized on the substrate side of the AlN/Si interface and is induced by diffusion of group-III element of the metal-organic precursor. Fortunately, maintaining the sheet resistance of this p-type layer to high values (∼2000 Ω/□) seems feasible with particular durations of either organometallic precursor or ammonia gas predose of the Si surface, i.e., the intentional introduction of one chemical precursor just before nucleation. It is proposed that the mechanism behind the control actually relies on the formation of disordered AlSiN between the crystalline AlN nucleation layer and the crystalline silicon substrate.

9.
OTO Open ; 5(1): 2473974X21996998, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33786411

RESUMO

OBJECTIVE: To establish the extent to which sound amplitudes delivered by a vibrating tuning fork change around its long axis and to evaluate whether such differences in amplitude might change the results of the Rinne test. STUDY DESIGN: Experimental measurements. SETTING: Laboratory setting. METHODS: Setup I: a vibrating tuning fork was handheld and manually rotated around its long axis next to a sound recording device (the simulated ear) in order to record sound amplitude data at a full range of angles relative to the device; files were split into segments in which sound amplitude changed: A (from a maximum to a minimum) and B (from a minimum to a maximum). Setup II: a vibrating tuning fork was machine-rotated, and the angle of rotation, along with the sound amplitude, was automatically recorded through a single full rotation. RESULTS: The angles of 0° and 180° (which equate to the established best practice in Rinne testing) were associated with the highest sound amplitudes. All other angles decreased sound amplitude. The greatest decrease in amplitude was recorded at 51° and 130°. This difference ranged from 9.8 to 34.7 dB, depending on the initial amplitude. CONCLUSION: The outcome of a Rinne test can be affected if attention is not paid to the precise angle at which the tuning fork is held relative to the ear. The potential of this effect will be greater when high background noise or patient hearing loss requires that the tuning fork be vigorously excited to obtain high sound amplitudes.

10.
Animals (Basel) ; 11(2)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572286

RESUMO

Glutamic acid decarboxylase (GAD) is an enzyme that catalyses the formation of γ-aminobutyric acid (GABA), the most important inhibitory neurotransmitter, from glutamic acid (Glu), which is considered the most important excitatory transmitter in the central and peripheral nervous systems. GAD is a key enzyme that provides a balance between Glu and GABA concentration. Hence, it can be assumed that if the GAD executes the synthesis of GABA from Glu, it is important in the stress response, and thus also in triggering the emotional states of the body that accompany stress. The aim of the study was to investigate the concentration of the GAD in motivational structures in the brain of the rabbit (Oryctolagus cuniculus) under altered homeostatic conditions caused by stress and variable availability of Glu. Summarising, the experimental results clearly showed variable concentrations of GAD in the motivational structures of the rabbit brain. The highest concentration of GAD was found in the hypothalamus, which suggests a strong effect of Glu and GABA on the activity of this brain structure. The GAD concentrations in individual experimental groups depended to a greater extent on blocking the activity of glutamate receptors than on the effects of a single stress exposure. The results obtained clearly support the possibility that a rapid change in the concentration of GAD could shift bodily responses to quickly achieve homeostasis, especially in this species. Further studies are necessary to reveal the role of the Glu-GAD-GABA system in the modulation of stress situations as well as in body homeostasis.

11.
Chemosphere ; 270: 129414, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33418216

RESUMO

The magnesium-zinc ferrites Mg1-xZnxFe2O4 (x = 0…1) were studied as magnetic sorbents for environmental applications. Low-temperature Mössbauer spectroscopy was used to determine the distribution of magnesium and ferric ions in the spinel crystal lattice. The influence of Zn content on magnetic parameters was investigated on the basis of VSM data. As the molar ratio of zinc to magnesium increases from 0 to 1, the pHPZC value decreases from 10.5 to 8.9. Langmuir and Freundlich models were used to check whether single-layer or multi-layer adsorption occurs. The adsorption of Cr(VI) and Ni(II) ions is well fitted by the Langmuir equation. To check the physical or chemical nature of the sorption process, the Dubinin-Radushkevich equation was used. It was found that the processes of adsorption of Cr(VI) and Ni(II) ions are of a chemical nature. The best Cr(VI) ion adsorption capacity was found for the Mg0·2Zn0·8Fe2O4 sample (qe = 30.49 mg/g). The percentage of heavy metal removal by the mixed ferrite samples increases with increasing zinc content. The most effective sorbent for Ni(II) removal is the Mg0·4Zn0·6Fe2O4 sample (93.2%). Modeling the antistructure provides deeper insight into the mechanism of heavy metal adsorption. The obtained magnesium-zinc ferrites are promising magnetic adsorbents for removing chromate and nickel ions from the environment.


Assuntos
Poluentes Químicos da Água , Zinco , Adsorção , Cátions , Cromo , Compostos Férricos , Concentração de Íons de Hidrogênio , Íons , Cinética , Magnésio , Fenômenos Magnéticos , Poluentes Químicos da Água/análise , Zinco/análise
12.
Ann Neurol ; 89(3): 498-510, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33244761

RESUMO

OBJECTIVE: Multiple sclerosis (MS) is a heterogeneous inflammatory demyelinating disease. Iron distribution is altered in MS patients' brains, suggesting iron liberation within active lesions amplifies demyelination and neurodegeneration. Whether the amount and distribution of iron are similar or different among different MS immunopatterns is currently unknown. METHODS: We used synchrotron X-ray fluorescence imaging, histology, and immunohistochemistry to compare the iron quantity and distribution between immunopattern II and III early active MS lesions. We analyzed archival autopsy and biopsy tissue from 21 MS patients. RESULTS: Immunopattern II early active lesions contain 64% more iron (95% confidence interval [CI] = 17-127%, p = 0.004) than immunopattern III lesions, and 30% more iron than the surrounding periplaque white matter (95% CI = 3-64%, p = 0.03). Iron in immunopattern III lesions is 28% lower than in the periplaque white matter (95% CI = -40 to -14%, p < 0.001). When normalizing the iron content of early active lesions to that of surrounding periplaque white matter, the ratio is significantly higher in immunopattern II (p < 0.001). Microfocused X-ray fluorescence imaging shows that iron in immunopattern II lesions localizes to macrophages, whereas macrophages in immunopattern III lesions contain little iron. INTERPRETATION: Iron distribution and content are heterogeneous in early active MS lesions. Iron accumulates in macrophages in immunopattern II, but not immunopattern III lesions. This heterogeneity in the two most common MS immunopatterns may be explained by different macrophage polarization, origin, or different demyelination mechanisms, and paves the way for developing new or using existing iron-sensitive magnetic resonance imaging techniques to differentiate among immunopatterns in the general nonbiopsied MS patient population. ANN NEUROL 2021;89:498-510.


Assuntos
Encéfalo/metabolismo , Ferro/metabolismo , Esclerose Múltipla/metabolismo , Adolescente , Adulto , Idoso , Apoferritinas/metabolismo , Apoptose , Encéfalo/imunologia , Encéfalo/patologia , Criança , Proteínas do Sistema Complemento/metabolismo , Feminino , Compostos Férricos/metabolismo , Compostos Ferrosos/metabolismo , Humanos , Imunoglobulinas/metabolismo , Imuno-Histoquímica , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Proteínas da Mielina/metabolismo , Glicoproteína Associada a Mielina/metabolismo , Oligodendroglia/metabolismo , Imagem Óptica , Espectrometria por Raios X , Síncrotrons , Adulto Jovem
13.
Ann Clin Transl Neurol ; 7(7): 1214-1224, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32608162

RESUMO

OBJECTIVE: Neurodegeneration is thought to be the primary cause of neurological disability in multiple sclerosis (MS). Dysfunctional RNA-binding proteins (RBPs) including their mislocalization from nucleus to cytoplasm, stress granule formation, and altered RNA metabolism have been found to underlie neurodegeneration in amyotrophic lateral sclerosis and frontotemporal dementia. Yet, little is known about the role of dysfunctional RBPs in the pathogenesis of neurodegeneration in MS. As a follow-up to our seminal finding of altered RBP function in a single case of MS, we posited that there would be evidence of RBP dysfunction in cortical neurons in MS. METHODS: Cortical neurons from 12 MS and six control cases were analyzed by immunohistochemistry for heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and TAR-DNA-binding protein-43 (TDP-43). Seven distinct neuronal phenotypes were identified based on the nucleocytoplasmic staining of these RBPs. Statistical analyses were performed by analyzing each phenotype in relation to MS versus controls. RESULTS: Analyses revealed a continuum of hnRNP A1 and TDP-43 nucleocytoplasmic staining was found in cortical neurons, from neurons with entirely nuclear staining with little cytoplasmic staining in contrast to those with complete nuclear depletion of RBPs concurrent with robust cytoplasmic staining. The neuronal phenotypes that showed the most nucleocytoplasmic mislocalization of hnRNP A1 and TDP-43 statistically distinguished MS from control cases (P < 0.01, P < 0.001, respectively). INTERPRETATION: The discovery of hnRNP A1 and TDP-43 nucleocytoplasmic mislocalization in neurons in MS brain demonstrate that dysfunctional RBPs may play a role in neurodegeneration in MS, as they do in other neurological diseases.


Assuntos
Córtex Cerebral/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Esclerose Múltipla/metabolismo , Neurônios/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Neurônios/classificação
14.
J Phys Chem A ; 123(36): 7710-7719, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31433182

RESUMO

Maleamate amidohydrolase (NicF) is a key enzyme in vitamin B3 metabolism that catalyzes the hydrolysis of maleamate to produce maleic acid and ammonia. Unlike most members from the amidohydrolase superfamily it does not require a metal ion. Here, we use multiscale computational enzymology to investigate the catalytic mechanism, substrate binding, oxyanion hole, and roles of key active site residues of NicF from Bordetella bronchiseptica. In particular, molecular dynamics (MD) simulations, quantum mechanics/molecular mechanics (QM/MM) and QTAIM methods have been applied. The mechanism of the NicF-catalyzed reaction proceeds by a nucleophilic addition-elimination sequence involving the formation of a thioester enzyme intermediate (IC2 in stage 1) followed by hydrolysis of the thioester bond to form the products (stage 2). Consequently, the formation of IC2 in stage 1 is the rate-limiting step with a barrier of 88.8 kJ·mol-1 relative to the reactant complex, RC. Comparisons with related metal-dependent enzymes, particularly the zinc-dependent nicotinamidase from Streptococcus pneumonia (SpNic), have also been made to further illustrate unique features of the present mechanism. Along with -NH- donor groups of the oxyanion hole (i.e., HN-Thr146, HN-Cys150), the active site ß-hydroxyl of threonine (HO-ßThr146) is concluded to play a role in stabilizing the carbonyl oxygen of maleamate during the mechanism.


Assuntos
Amidoidrolases/química , Amidoidrolases/metabolismo , Biocatálise , Maleatos/metabolismo , Simulação de Dinâmica Molecular , Teoria Quântica , Bordetella bronchiseptica/enzimologia , Hidrólise , Maleatos/química , Estrutura Molecular
15.
J Neuroimmunol ; 324: 149-156, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30190085

RESUMO

Dysfunction of the RNA binding protein (RBP) heterogeneous nuclear ribonuclear protein A1 (hnRNP A1) has been shown to contribute to the pathogenesis of neurodegenerative diseases, but its involvement in multiple sclerosis (MS) is largely unknown. In a neuronal cell line, interferon-γ caused hnRNP A1 nucleocytoplasmic mislocalization; colocalization of hnRNP A1 in stress granules (SGs); and inhibition of translation. Neurons in the brain of a MS patient showed pathogenic RBP dysfunction, including nuclear depletion of hnRNP A1, its mislocalization to the cytoplasm, and its colocalization in SGs. These data indicate a role for dysfunctional hnRNP A1 in the pathogenesis of MS.


Assuntos
Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Esclerose Múltipla/metabolismo , Estresse Oxidativo/fisiologia , Linhagem Celular Tumoral , Ribonucleoproteína Nuclear Heterogênea A1/genética , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
16.
Biophys J ; 113(3): 605-612, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28793215

RESUMO

Ketamine inhibits pentameric ligand-gated ion channels (pLGICs), including the bacterial pLGIC from Gloeobacter violaceus (GLIC). The crystal structure of GLIC shows R-ketamine bound to an extracellular intersubunit cavity. Here, we performed molecular dynamics simulations of GLIC in the absence and presence of R- or S-ketamine. No stable binding of S-ketamine in the original cavity was observed in the simulations, largely due to its unfavorable access to residue D154, which provides important electrostatic interactions to stabilize R-ketamine binding. Contrary to the symmetric binding shown in the crystal structure, R-ketamine moved away from some of the binding sites and was bound to GLIC asymmetrically at the end of simulations. The asymmetric binding is consistent with the experimentally measured negative cooperativity of ketamine binding to GLIC. In the presence of R-ketamine, all subunits showed changes in structure and dynamics, irrespective of binding stability; the extracellular intersubunit cavity expanded and intersubunit electrostatic interactions involved in channel activation were altered. R-ketamine binding promoted a conformational shift toward closed GLIC. Conformational changes near the ketamine-binding site were propagated to the interface between the extracellular and transmembrane domains, and further to the pore-lining TM2 through two pathways: pre-TM1 and the ß1-ß2 loop. Both signaling pathways have been predicted previously using the perturbation-based Markovian transmission model. The study provides a structural and dynamics basis for the inhibitory modulation of ketamine on pLGICs.


Assuntos
Ketamina/farmacologia , Canais Iônicos de Abertura Ativada por Ligante/antagonistas & inibidores , Canais Iônicos de Abertura Ativada por Ligante/química , Simulação de Dinâmica Molecular , Multimerização Proteica , Ativação do Canal Iônico/efeitos dos fármacos , Ketamina/metabolismo , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Estrutura Quaternária de Proteína , Eletricidade Estática
17.
Acta Neuropathol ; 134(1): 45-64, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28332093

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) in which oligodendrocytes, the CNS cells that stain most robustly for iron and myelin are the targets of injury. Metals are essential for normal CNS functioning, and metal imbalances have been linked to demyelination and neurodegeneration. Using a multidisciplinary approach involving synchrotron techniques, iron histochemistry and immunohistochemistry, we compared the distribution and quantification of iron and zinc in MS lesions to the surrounding normal appearing and periplaque white matter, and assessed the involvement of these metals in MS lesion pathogenesis. We found that the distribution of iron and zinc is heterogeneous in MS plaques, and with few remarkable exceptions they do not accumulate in chronic MS lesions. We show that brain iron tends to decrease with increasing age and disease duration of MS patients; reactive astrocytes organized in large astrogliotic areas in a subset of smoldering and inactive plaques accumulate iron and safely store it in ferritin; a subset of smoldering lesions do not contain a rim of iron-loaded macrophages/microglia; and the iron content of shadow plaques varies with the stage of remyelination. Zinc in MS lesions was generally decreased, paralleling myelin loss. Iron accumulates concentrically in a subset of chronic inactive lesions suggesting that not all iron rims around MS lesions equate with smoldering plaques. Upon degeneration of iron-loaded microglia/macrophages, astrocytes may form an additional protective barrier that may prevent iron-induced oxidative damage.


Assuntos
Química Encefálica , Ferro/análise , Esclerose Múltipla/metabolismo , Zinco/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Feminino , Ferritinas/química , Humanos , Macrófagos/química , Macrófagos/patologia , Masculino , Microglia/química , Microglia/metabolismo , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Remielinização , Adulto Jovem
18.
Acta Neuropathol ; 133(4): 597-612, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28184993

RESUMO

Pathogenic autoantibodies associated with neuromyelitis optica (NMO) induce disease by targeting aquaporin-4 (AQP4) water channels enriched on astrocytic endfeet at blood-brain interfaces. AQP4 is also expressed at cerebrospinal fluid (CSF)-brain interfaces, such as the pial glia limitans and the ependyma and at the choroid plexus blood-CSF barrier. However, little is known regarding pathology at these sites in NMO. Therefore, we evaluated AQP4 expression, microglial reactivity, and complement deposition at pial and ependymal surfaces and in the fourth ventricle choroid plexus in 23 autopsy cases with clinically and/or pathologically confirmed NMO or NMO spectrum disorder. These findings were compared to five cases with multiple sclerosis, five cases of choroid plexus papilloma, and five control cases without central nervous system disease. In the NMO cases, AQP4 immunoreactivity was reduced relative to control levels in the pia (91%; 21/23), ependyma (56%; 9/16), and choroid plexus epithelium (100%; 12/12). AQP4 immunoreactivity was normal in MS cases in these regions. Compared to MS, NMO cases also showed a focal pattern of pial and ependymal complement deposition and more pronounced microglial reactivity. In addition, AQP4 loss, microglial reactivity, and complement deposition colocalized along the pia and ependyma only in NMO cases. Within the choroid plexus, AQP4 loss was coincident with C9neo immunoreactivity on epithelial cell membranes only in NMO cases. These observations demonstrate that NMO immunopathology extends beyond perivascular astrocytic foot processes to include the pia, ependyma, and choroid plexus, suggesting that NMO IgG-induced pathological alterations at CSF-brain and blood-CSF interfaces may contribute to the occurrence of ventriculitis, leptomeningitis, and hydrocephalus observed among NMO patients. Moreover, disruption of the blood-CSF barrier induced by binding of NMO IgG to AQP4 on the basolateral surface of choroid plexus epithelial cells may provide a unique portal for entry of the pathogenic antibody into the central nervous system.


Assuntos
Plexo Corióideo/patologia , Epêndima/patologia , Neuromielite Óptica/patologia , Pia-Máter/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Líquido Cefalorraquidiano , Plexo Corióideo/metabolismo , Estudos de Coortes , Epêndima/metabolismo , Feminino , Expressão Gênica , Humanos , Masculino , Microglia/metabolismo , Microglia/patologia , Pessoa de Meia-Idade , Neuromielite Óptica/metabolismo , Pia-Máter/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Adulto Jovem
19.
Handb Clin Neurol ; 133: 95-106, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27112673

RESUMO

While multiple sclerosis (MS) is often referred to as an autoimmune inflammatory demyelinating disease, neuromyelitis optica (NMO) is currently the only proven and well-characterized autoimmune disease affecting the glial cells. The target antigen is the water channel aquaporin-4 (AQP4), expressed on astrocytes, and antibodies against AQP4 (AQP4-IgG) are present in the serum of NMO patients. Clinical, serologic, cerebrospinal fluid, and neuroimaging criteria help differentiate NMO from other central nervous system inflammatory demyelinating disorders. Pathologically, the presence of dystrophic astrocytes, myelin vacuolation, granulocytic inflammatory infiltrates, vascular hyalinization, macrophages containing glial fibrillary acidic protein-positive debris and/or the absence of Creutzfeldt-Peters cells is more characteristic, but not specific, for NMO. These findings should prompt the neuropathologist to perform AQP4 immunohistochemistry, and recommend serologic testing for AQP4-IgG to exclude a diagnosis of NMO/NMO spectrum disorder (NMOSD). Loss of AQP4 on biopsied active demyelinating lesions and/or seropositivity for AQP4-IgG may confirm the diagnosis of NMO/NMOSD, which is important because treatments that are suitable for MS can aggravate NMO. Few other putative glial antigens have been postulated, but their pathogenic role remains to be demonstrated.


Assuntos
Aquaporina 4/imunologia , Diferenciação Celular , Proteína Glial Fibrilar Ácida/imunologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Neuroglia/patologia , Autoanticorpos/metabolismo , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Humanos , Neuroglia/metabolismo
20.
Neurology ; 84(2): 148-58, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25503621

RESUMO

OBJECTIVE: To assess, in a surgical biopsy cohort of active demyelinating lesions, the diagnostic utility of aquaporin-4 (AQP4) immunohistochemistry in identifying neuromyelitis optica (NMO) or NMO spectrum disorder (NMOSD) and describe pathologic features that should prompt AQP4 immunohistochemical analysis and AQP4-immunoglobulin G (IgG) serologic testing. METHODS: This was a neuropathologic cohort study of 20 surgical biopsies (19 patients; 11 cord/9 brain), performed because of diagnostic uncertainty, interpreted as active demyelinating disease and containing 2 or more of the following additional features: tissue vacuolation, granulocytic infiltrates, or astrocyte injury. RESULTS: AQP4 immunoreactivity was lost in 18 biopsies and increased in 2. Immunopathologic features of the AQP4 loss cohort were myelin vacuolation (18), dystrophic astrocytes and granulocytes (17), vascular hyalinization (16), macrophages containing glial fibrillary acid protein (GFAP)-positive debris (14), and Creutzfeldt-Peters cells (0). All 14 cases with available serum tested positive for AQP4-IgG after biopsy. Diagnosis at last follow-up was NMO/NMOSD (15) and longitudinally extensive transverse myelitis (1 each relapsing and single). Immunopathologic features of the AQP4 increased cohort were macrophages containing GFAP-positive debris and granulocytes (2), myelin vacuolation (1), dystrophic astrocytes (1), Creutzfeldt-Peters cells (1), and vascular hyalinization (1). Diagnosis at last follow-up was multiple sclerosis (MS) and both tested AQP4-IgG seronegative after biopsy. CONCLUSIONS: AQP4 immunohistochemistry with subsequent AQP4-IgG testing has diagnostic utility in identifying cases of NMO/NMOSD. This study highlights the importance of considering NMOSD in the differential diagnosis of tumefactive brain or spinal cord lesions. AQP4-IgG testing may avert biopsy and avoid ineffective therapies if these patients are erroneously treated for MS.


Assuntos
Aquaporina 4/imunologia , Astrócitos/patologia , Autoanticorpos/imunologia , Encéfalo/imunologia , Imunoglobulina G/imunologia , Esclerose Múltipla/diagnóstico , Bainha de Mielina/patologia , Neuromielite Óptica/diagnóstico , Medula Espinal/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Encéfalo/patologia , Criança , Estudos de Coortes , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/diagnóstico , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/imunologia , Feminino , Humanos , Imuno-Histoquímica , Inflamação , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/imunologia , Neuromielite Óptica/imunologia , Medula Espinal/patologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...